Init commit
This commit is contained in:
parent
247728518f
commit
749c8d21b0
1 changed files with 60 additions and 0 deletions
60
ParaUtils/__init__.py
Normal file
60
ParaUtils/__init__.py
Normal file
|
|
@ -0,0 +1,60 @@
|
|||
#Bits and bobs used for many different projects. Junk drawer module
|
||||
|
||||
#Useful functions for parsing race-like durations, and normalizing their string reps
|
||||
def t2f(S):
|
||||
if not(S or False):
|
||||
return None
|
||||
m,s = ('0:%s' % S).split(':')[-2:]
|
||||
try:
|
||||
return np.round(60*int(m) + float(s),2)
|
||||
except:
|
||||
return -1
|
||||
|
||||
def f2t(S):
|
||||
if not(S or False) or (int(''.join([c for c in '0'+str(S) if c.isdigit()])) == 0) or (S <= 0):
|
||||
return ''
|
||||
S = float(S)
|
||||
m = int(S/60)
|
||||
s = S-60*m
|
||||
hs = s-int(s)
|
||||
s = int(s)
|
||||
return f'{m:02}:{s:02}.{round(hs*100):02}'
|
||||
|
||||
#Canada Summer Games eligible events
|
||||
CSG = pd.DataFrame([
|
||||
{'Stroke':'Butterfly','Distance':50,'SportClass':[1,2,3,4,5,6,7]},
|
||||
{'Stroke':'Butterfly','Distance':100,'SportClass':[8,9,10,11,12,13,14]},
|
||||
{'Stroke':'Backstroke','Distance':50,'SportClass':[1,2,3,4,5]},
|
||||
{'Stroke':'Backstroke','Distance':100,'SportClass':[1,2,6,7,8,9,10,11,12,13,14]},
|
||||
{'Stroke':'Breaststroke','Distance':50,'SportClass':[1,2,3]},
|
||||
{'Stroke':'Breaststroke','Distance':100,'SportClass':[4,5,6,7,8,9,11,12,13,14]},
|
||||
{'Stroke':'Medley','Distance':150,'SportClass':[1,2,3,4]},
|
||||
{'Stroke':'Medley','Distance':200,'SportClass':[5,6,7,8,9,10,11,12,13,14]},
|
||||
{'Stroke':'Freestyle','Distance':50,'SportClass':[1,2,3,4,5,6,7,8,9,10,11,12,13,14]},
|
||||
{'Stroke':'Freestyle','Distance':100,'SportClass':[1,2,3,4,5,6,7,8,9,10,11,12,13,14]},
|
||||
{'Stroke':'Freestyle','Distance':200,'SportClass':[1,2,3,4,5,14]},
|
||||
{'Stroke':'Freestyle','Distance':400,'SportClass':[6,7,8,9,10,11,12,13]},
|
||||
]).explode('SportClass').reset_index(drop=True)
|
||||
|
||||
def parse_WPS_rankings(DF):
|
||||
'''Takes a pandas datafram, usually loaded from an excel file, and cleans it up for use'''
|
||||
return (
|
||||
DF
|
||||
#Makes .dot notation easier
|
||||
.pipe(lambda df: df.rename(columns={c:c.replace(' ','_') for c in df.columns}))
|
||||
|
||||
#Drop VACANT events and relay results
|
||||
.pipe(lambda df: df[df.SDMS_ID.notnull()])
|
||||
|
||||
#Parse out event information into useful columns
|
||||
.pipe(lambda df: pd.concat([df,df.Event.str.extract(r"'s (?P<Distance>\d+) m (Individual )*(?P<Stroke>[A-z]+) [SBM]+(?P<SportClass>\d+)")],axis=1))
|
||||
|
||||
#Cleanup column dtypes
|
||||
.assign(Date=lambda df: pd.to_datetime(df.Date))
|
||||
.assign(Year=lambda df: df.Date.dt.year)
|
||||
.assign(Seconds=lambda df: df.Result.apply(t2f))
|
||||
.astype({'SportClass':int,'Distance':int,'SDMS_ID':int})
|
||||
|
||||
#Drop excess columns
|
||||
.pipe(lambda df: df['Gender SportClass Distance Stroke Result Seconds SDMS_ID NPC Given_Name Family_Name Date'.split()])
|
||||
)
|
||||
Loading…
Add table
Reference in a new issue